Inteligencia artificial

  • Modelo de Neurona McCulloch-Pitts

    Warren McCulloch y Walter Pitts proponen el primer modelo matemático de una neurona artificial. Este modelo, conocido como la neurona McCulloch-Pitts, sentó las bases para el desarrollo de las redes neuronales artificiales y la computación neuronal.
  • La Prueba de Turing

    La Prueba de Turing
    Alan Turing propone la «Prueba de Turing» para evaluar la inteligencia de las máquinas. Esta prueba plantea un método para determinar si una máquina puede exhibir un comportamiento inteligente equivalente al de un ser humano.
  • Conferencia de Dartmouth

    Se acuña el término «Inteligencia Artificial» en esta histórica conferencia. Organizada por John McCarthy, Marvin Minsky, Nathaniel Rochester y Claude Shannon, la Conferencia de Dartmouth reunió a destacados investigadores para discutir la posibilidad de crear máquinas que pudieran simular aspectos de la inteligencia humana.
  • El Perceptrón de Rosenblatt

    Frank Rosenblatt desarrolla el Perceptrón, el primer modelo de red neuronal implementado en hardware. Este dispositivo podía aprender a clasificar patrones simples, marcando un hito importante en el desarrollo de las redes neuronales artificiales y el aprendizaje automático.
  • El Stanford Cart: Pionero en Navegación Autónoma

    El Stanford Cart se convierte en uno de los primeros robots móviles capaces de navegar de forma autónoma en entornos con obstáculos. Desarrollado en la Universidad de Stanford bajo la dirección de Hans Moravec, el Cart utilizaba una cámara de televisión montada en un riel deslizante para tomar múltiples imágenes desde diferentes ángulos. Estas imágenes se procesaban para crear un mapa 3D del entorno y planificar una ruta libre de obstáculos.
  • Deep Blue vs. Kasparov

    Deep Blue vs. Kasparov
    Deep Blue de IBM vence al campeón mundial de ajedrez Garry Kasparov. Este evento histórico marcó la primera vez que una computadora derrotó a un campeón mundial de ajedrez en un match a seis partidas bajo condiciones de torneo. Deep Blue, desarrollado por un equipo de ingenieros de IBM, utilizaba una combinación de hardware especializado y software sofisticado para evaluar millones de posiciones por segundo.
  • Introducción de las Redes Generativas Adversarias (GANs)

    Ian Goodfellow y sus colegas introducen las Redes Generativas Adversarias (GANs). Este nuevo enfoque para el aprendizaje automático implica dos redes neuronales compitiendo entre sí, lo que permite la generación de datos sintéticos muy realistas. Las GANs han tenido un impacto significativo en áreas como la generación de imágenes y el aprendizaje no supervisado.
  • AlphaGo vence a Lee Sedol

    AlphaGo de DeepMind vence al campeón mundial de Go, Lee Sedol. Este evento marcó un hito significativo en la historia de la IA, ya que el Go se consideraba uno de los juegos más desafiantes para las computadoras debido a su complejidad y el número astronómico de posibles movimientos. AlphaGo, desarrollado por DeepMind (una empresa de Google), utilizó una combinación de aprendizaje profundo y árboles de búsqueda Monte Carlo para lograr esta hazaña.
  • BERT: Avance en la Comprensión del Lenguaje Natural

    BERT: Avance en la Comprensión del Lenguaje Natural
    Google introduce BERT (Bidirectional Encoder Representations from Transformers), un modelo de procesamiento de lenguaje natural que mejora significativamente la comprensión del contexto en las búsquedas. BERT representa un importante avance en la capacidad de las máquinas para entender y procesar el lenguaje humano en su contexto completo.
  • Era de la IA Generativa (2023-2024)

    Era de la IA Generativa (2023-2024)
    ChatGPT y otros modelos de IA generativa se vuelven ampliamente accesibles al público. Este período, que se extiende hasta 2024, marca el inicio de una nueva era en la que los modelos de lenguaje de gran escala, como GPT (Generative Pre-trained Transformer) desarrollado por OpenAI y Claude desarrollado por Anthropic, se convierten en herramientas de uso cotidiano. Estos modelos son capaces de generar texto coherente y contextualmente relevante, realizar tareas de traducción, responder preguntas.